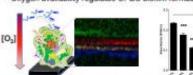
CYTOCHROME BD IS REQUIRED FOR UROPATHOGENIC ESCHERICHIA COLI PATHOGENESIS AND BIOFILM DEVELOPMENT

Connor Beebout¹, Levy Sominsky², Allison Eberly^{1,3}, and Maria Hadjifrangiskou^{1,4}


Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine; Pvanderbilt University, Polivision of Clinical Microbiology, Mayo Clinic; Vanderbilt Institute for Infection, Immunology, and Inflammation

Biofilm formation is a common bacterial survival strategy

- Bacteria form multicellular communities known as biofilms in the natural environment and during infection
- . Bacteria in biofilms are highly resistant to antibiotics and immunity
- Biofilms are a major contributor to chronic bacterial infection and treatment failure

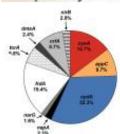
Oxygen is a regulator of UPEC biofilms

- Uropathogenic Escharichie coli (UPEC) encounters oxygen gradients during its infectious cycle
- UPEC requires aerobic respiration to infect the urinary tract
- Biofilm formation is critical aspect of virulence in the urinary tract
- · Oxygen availability regulates UPEC biofilm formation

Floyd et al. PLoS Path 2015; Royd & Mitchell et al. J. Sect 2016; Sheety et al. LMS 2017

Quinol oxidases mediate aerobic respiration

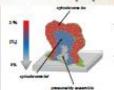
Heme copper oxidase


- Cytochrome bo (cytoABCD)
- Atmospheric (21%) oxygen

bd-type oxidases

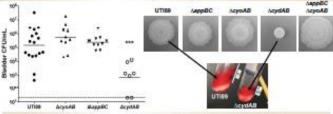
- Cytochromes bd (cydABX) and bd₂ (appBC)
- Low (2 15%) oxygen


Adapted from Eberty et al UMS 2017

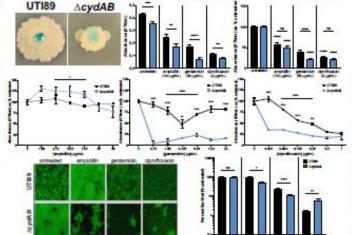

Cytochrome bd is the most abundant respiratory transcript in UPEC biofilms

- UPEC exhibits respiratory heterogeneity in biofilms
- The majority of transcript corresponds to serobic respiratory operons
- cydABX (cytochrome bd) is the most abundant respiratory operon in biofilms

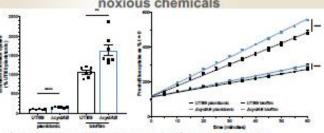
Quinol oxidases are expressed in spatially distinct subpopulations



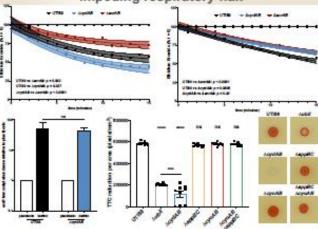
- Cytochrome bo and bd are inversely organized along the oxygen gradient
- UPEC organizes into differentially respiring subpopulations in biofilms


Hypothesis

Differentially respiring subpopulations regulate biofilm development and stress tolerance


Loss of cytochrome bd disrupts biofilm formation and UTI pathogenesis

Loss of cytochrome bd increases biofilm sensitivity to antibiotics



△cydAB biofilms cells have increased influx of noxious chemicals

- Loss of cytochrome bd increases expression of outer membrane porins
- AcydAB biofilm cells have increased influx of noxious chemicals

Loss of cytochrome bd decreases efflux by impeding respiratory flux

- AcydAB cells have a biofilm-specific decrease in efflux of noxious chemicals
- · AcydAB reduces efflux pump activity without affecting expression

Conclusions

- · Quinol axidases are spatially organized along biofilm oxygen gradients
- Cytochrome bd is central regulator of biofilm development
- Loss of cytochrome bd increases biofilm sensitivity to antibiotics by influencing the accumulation of antibiotics and other noxious chemicals
- · Inhibition of cytochrome bd is a potential therapeutic strategy

Future Directions

- Identify mechanisms by which cytochrome bd promotes host colonization
- . Define mechanisms by which cytochrome bd influences ECM production
- Investigate inhibition of cytochrome bd as a potential anti-biofilm therapeutic approach

Funding: NIH R01Al107052, P20DK123967, T32GM007347, and F30Al150077.